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Abstract
Systems pharmacology is an emerging field that integrates systems biology and pharmacology to advance the
process of drug discovery, development and the understanding of therapeutic mechanisms. The aim of the present
work is to highlight the role that the systems pharmacology plays across the traditional herbal medicines discipline,
which is exemplified by a case study of botanical drugs applied in the treatment of depression. First, based on critic-
ally examined pharmacology and clinical knowledge, we propose a large-scale statistical analysis to evaluate the
efficiency of herbs used in traditional medicines. Second, we focus on the exploration of the active ingredients and
targets by carrying out complex structure-, omics- and network-based systematic investigations. Third, specific in-
formatics methods are developed to infer drug^ disease connections, with purpose to understand how drugs work
on the specific targets and pathways. Finally, we propose a new systems pharmacology method, which is further
applied to an integrated platform (Herbal medicine Systems Pharmacology) of blended herbal medicine and omics
data sets, allowing for the systematization of current and traditional knowledge of herbal medicines and, import-
antly, for the application of this emerging body of knowledge to the development of new drugs for complex human
diseases.
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INTRODUCTION
Traditional herbal medicines are plant-derived nat-

ural products, which play an important role in health

maintenance for the people of Asia, and are becom-

ing more frequently used in the western countries

[1]. As a gorgeous cradle of new active compounds

in drug discovery, herbal medicines, an imperative

group of natural products remedies delegating more

multiplicity in structure, bioactivity and less toxicity

[2], have attracted extensive attention worldwide [3].

Nowadays, there is a growing recognition in the

west that single drug remedies are not enough to

treat disease, and the concept of ‘one disease—one

target—one-size-fits-all’ is shifting toward more

comprehensive therapeutic strategies. Therefore,

herbal medicines, featured as abundant bioactive in-

gredients and multiple targets, are considered more

effective, particularly for the complex chronic
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diseases such as schizophrenia, bipolar disorder,

diabetes, cardiovascular diseases, depression and so

forth [4].

In modern medicine, chronic diseases are often

treated with prolonged administration of chemical

drugs, which might result in long-term toxicity or

even resistance. Thus, the combinations of drugs is

thought to be the most effective way of countering

biological buffering, which allows for the reduced

dosing of each agent while increased therapeutic

selectivity as well [5]. Interestingly, herbal medicines

might overcome the shortage of either the long-

period toxicity or resistance in two ways: (i) being

natural and therefore ‘healthier’ than the synthetic

chemicals and (ii) containing combinations of bio-

active compounds and thus providing synergistic

effects. One famous example is herbal medicine

St. John’s wort, which has been widely used to

treat mild-to-moderate depression in Europe and

United States. Despite the attractiveness of herbal

medicines, the clinical evidence that props up the

use of most them is still limited, awaiting discovery

of methods sufficient to increase the understanding

of herbs.

Herbal concoctions are a complex system, which

contains many active compounds that may also hit

multiple biological targets involved in various patho-

genesis. However, in most cases, we do not know

what specific ingredients in a particular herb work to

treat a disease, and the factors determining how

effective the herb will be are still unclear. Thus, a

question arises that is it possible to develop a method

that could measure the whole body’s response to a

mixture of herbs? In addition, it is more difficult to

translate ancient interpretations of diseases into those

used in modern medicine, i.e. translate into modern

biochemical and biological meanings to reduce the

irreconcilable differences between traditional medi-

cine and western science [6].

In this work, we have extensively reviewed cur-

rent available in silico methods that are particularly

associated with the discovery and development of

herbal medicines. Based on the survey of systems

pharmacology, bioinformatics and computational

chemistry methods and models, from a systems per-

spective, we deciphered the molecular logic under-

lying the combinatorial/synergistic effects using

multi-component herbs. Particularly, as an example,

we depict the systems-level treating effects of anti-

depression herbal medicines by using the drug-

target-disease mapping and the pharmacokinetic

screening techniques. To the best of our knowledge,

this is the first description of a comprehensive dissec-

tion of herb–disease connections using systems

pharmacology methods. We believe that this

strategy of gaining a functional/systems understand-

ing of an herb medicine may serve as a model for

further mode-of-action studies and novel drug

development.

WHYABSORPTION,
DISTRIBUTION, METABOLISM
ANDEXCRETION EVALUATION
FORHERBALMEDICINES?
Absorption, distribution, metabolism and excretion

(ADME) evaluations of drugs are critical procedures

in drug discovery and development [7]. In the late

1990s, unfavorable pharmacokinetic properties were

the primary causes of costly late-stage failures in drug

development [8]. Consequently, it has become

extensively appreciated that further efforts should

be put into the area with the least delay possible [9].

To be specific, herbal medicine is a multifaceted

system consisting of manifold components.

However, only a few of them exhibit favorable

ADME properties [10] with potential of a biological

effect (Figure 1). The traditional process of drug de-

velopment for herbs follows a separation, purification

and structure elucidation way to identify discrete

valid entities [11]. Although the past two decades

have witnessed increasing application of various

ADME studies in drug discovery [12], only �30%

of the most commonly used herbal medicines in the

United States performed in vitro ADME evaluations

[3]. Clearly, the large numbers of components in

herbs make the screening and analysis of their

bioactive components extremely challenging.

Therefore, in the following part, we concentrate

on the introduction of in silico ADME methods, fea-

tured as cost-effective and time-saving strategy, to

herbal medicine studies for facilitation of the plant-

origin drug discovery (Figure 1).

HOWTO PREDICTADME
PROPERTIES?
Approaches to depicting ADME properties count on

experimental or in silico tools, used alone or in amal-

gamation [13]. Nevertheless, experimental tools

including physicochemical methods and biological

assays have two major drawbacks of higher
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throughput and shorter time for data turnaround [14–

17]. Owing to this reason, theoretical approaches

appear to be a good alternative to the prediction of

ADME properties. With the use of insilicomodels, the

global number of compounds to be synthesized and

experimentally tested is boiled down to better suit to

the capacity of subsequent analysis [17] and to advance

the veracity and efficiency of the studies.

Absorption
Following oral administration, drugs are normally

assimilated by passive diffusion, carrier-mediated

uptake or active transportation through the lining

of the stomach or intestinal epithelial cell before

reaching the general circulation [13, 18, 19].

The currently obtainable computational models

about absorption can be mainly classified into two

categories—empirical and mechanistic [20].

Empirical models about logS, logP, Caco2 passive

permeability use statistical tools to explore the,

either linear [13, 21] or nonlinear [22, 23], relation-

ships between certain structural descriptors and the

observed absorption properties [24]. Contrariwise,

mechanistic models use the quantum/molecular

mechanics methods to estimate the atomic inter-

actions between micro-molecules and macromol-

ecules and thus are more predictive due to a more

expanded chemistry space, which yet has not been

applied to the absorption prediction. In the future,

the prime methodology, we assume, will be the one

that uses both experimental and in silicomethods in a

complementary way to model the drug absorption

process.

Distribution
Tissue distribution is a significant determinant of the

pharmacokinetic profile of drugs [9], which princi-

pally comes down to blood–brain barrier (BBB),

transporters and plasma protein binding. For an out-

line of the utmost prominent work about BBB

penetration, the currently proposed models diverge

considerably in terms of the methodological

approaches ranging from the artless regression

equations unfolding logBBB and the transporter

properties [25] as a linear combination of selected

physicochemical properties, to intricate models ex-

ploiting sophisticated and stylish statistical techniques

and large pools of theoretical descriptors [26–29].

However, most of the models have several defects

for the merely use of logBBB value, which is fre-

quently fitted ‘as is’ disregarding the relationship with

plasma protein binding as a sole factor [29], thus

overlooking other determinants of the permeability

process. Besides, the character of active transporters

such as P-glycoprotein (P-gp) is underestimated and

the intricate nature of BBB is deserted, which co-

operatively give rise to misleading conclusions [30].

To disentangle the P-gp modulating activity of

drugs, diverse theoretical methods by modeling of

P-gp substrates, nonsubstrates and inhibitors have

been created. These methods include logP, molecu-

lar weight, amphiphilicity and so forth, which were

testified to dedicate smartly toward the interactions

with P-gp [31–34].

Metabolism
Of various ADME endpoints, metabolism might be

the most challenging one to evaluate and predict, as

it is a complex biological process that encompasses

a number of—often competing—mechanisms and

Figure 1: The process of herbal medicines interacts
with body in molecular/network/organ levels. The
global systems analysis frames a hierarchy of functional
domains of macroscopic level, mesoscopic/macroscopic
level and microscopic level. Molecules in herbs derived
from ADME screening are interacted with proteins.
These loci of interaction, termed connectivity nodes,
interact with other nodes across the entire network.
The molecule-induced stimulus perturbs organs, with
the final result being detectable or measurable thera-
peutic effects.
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enzymatic systems [9]. Approaches to metabolism are

conceivable to note an evolution from rule-based

methods to recent structure-based models [35–38].

Primarily, rule-based approaches use data mining

techniques to abstract generalized rules to determine

the part of a molecule that undergoes metabolic

alteration from a large database [39] but usually

ending up with tiny veracity. To enhance the

accuracy veracity of prediction, the ligand-based

approaches subsequently emerged on the prediction

stage [40, 41]. As the dimensions and composition of

the data set are unset, the performances of these

models are generally prejudiced. Ultimately, the

protein-based methods using the 3D-structure infor-

mation, which could be applied in molecular dock-

ing approaches, were further developed [42]. This is

particularly for herbal chemicals whose structure-ac-

tivity relationship studies have been successfully used

to explore the interactions of naturally occurring

compounds with cytochrome P450, such as

Favonoids, piperine [43] and so forth.

Excretion
Drug excretion refers to its irreversible removal pro-

cess from the body in a chemically altered or, some-

times, unbroken form, which normally occurs via

three chief routes: in bile via the liver, in urine via

the kidneys or in exhaled air via the lungs [44]. As

these procedures are determined by a great many

physicochemical and physiological factors such as

the blood flow, protein binding and lipophilicity

[9], the development of an integrated model for

modeling excretion is actually challenging or even

impossible. Therefore, this part is omitted in this

review, as the technique is still in its initial stage.

As aforementioned, though having been inte-

grated into modern drug development, generally

speaking in silico ADME studies have not yet been

put into herbal remedy discovery [3, 45]. Recently,

we have developed a set of new ADME strategies for

visualizing active ingredients and exploring the

mechanisms of action of herbs [11, 46–48]. In the

‘Case study’ section, we will systematically introduce

the procedures to carry out these computational

ADME techniques on medicinal herb studies.

HOWTO PREDICT DRUG
TARGETS?
With the explosion of biomedical data and informa-

tion generated from a variety of innovative

technologies, we are embracing an exciting omics

drug discovery era. Clearly, in a systems level to

search potential compound and target interactions,

the ‘dry’ experiment (computational method)

should be the first choice, owing to the shortages

of the ‘wet’ experiment as time-consuming, expen-

sive and also being limited in small scale [49].

Text mining
Text mining can be defined as ‘the computational

unearthing of newfangled, formerly unknown infor-

mation, by automatically mining information from

various written resources’ [50]. This technique has

grown into one of the most important stage of im-

minent drug discovery pipelines, which might be

beneficial to select appropriate targets and better

fathom the cellular mechanisms or phenotypes of

human diseases. It has also been applied for identify-

ing disease-associated entities (genes/proteins), dis-

ease-related networks [51, 52] and even the

interactions of herbal active ingredients and the tar-

gets [53]. It goes without saying that text mining

makes great contribution to spring biological entities

and dig from an astronomically large number of ex-

ploration articles. However, owing to the term vari-

ation and term ambiguity of biomedical entities, the

full text of article is often restricted to be access to

limited information.

Chemogenomic method
Chemogenomic method has arisen as a newfangled

discipline in target prediction, which drew a bead on

exploiting the much larger chemical space [54].

Chemogenomic approach consists of the ligand-

based, target-based and target-ligand methods,

which have been blossomed out into revealing the

novel relationship between compounds and targets

[55–57]. The ligand-based chemometric approach is

based on the motivating hypothesis that two similar

molecules on the cards have analogous characters and

will combine to the same group of proteins, such as

the Similarity Ensemble Approach [58]; another rep-

resentative example is the pharmacophore method

[54]. Based on chemical feature matching and

shape complementarity in binding site, target-based

method adopts two strategies: docking and reverse

(or inverse) docking [59–61]. Before these two

approaches, the target-ligand approach is an intricacy

forecast system, which incorporates the ligand chem-

ical space, target space and the presently known

drug-target connections information. It is capable
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of predicting ligands or targets for a specified target

or ligand without prior attempting to define a series

of specific similar receptors or ligands [56].

Remarkably, the optimal models have shown im-

pressive performance in prediction of drug-target as-

sociations for herbal medicines [11, 46, 62].

Database searching
In the wake of information explosion by multifarious

groundbreaking technologies and the spring up of

target data, we are fortunately on the brink of a

stimulating era that plentiful of databases warehous-

ing a variety of data are updating as time goes on.

Graceful examples are Therapeutic Targets Database

(TTD) [63] and DrugBank [64]. Such information

has resulted in the integration of further resources

and computational methods, such as herbal ingredi-

ent targets database [53], TcmSPTM [65] and TCM

Database@Taiwan [66], which have served as valu-

able platforms for analysis of targets and drug actions.

Owing to the inherent limitations and challenges

of various approaches, we suggest that a combination

of different approaches should be adopted to circum-

vent the drawbacks of a single method. In the ‘Case

study’ section, we will give an example to illustrate

how to combine all these different methods together

to fulfill the task of a systematic identification of

active ingredients, as well as the elucidation of

action mechanisms for herbal medicines.

HOW INTERGRATENETWORK
ANALYSIS INTOPHARMACOLOGY?
Network pharmacology, the new paradigm in drug

study, covers systems biology and pharmacology,

which not only attempts to comprehend the role

of networks for drug action in biological systems

but also exploits the information to notify and

guide drug development along with endeavors to

tackle the two major sources of attrition in drug de-

velopment—efficacy and toxicity [67, 68]. Using

various scales network-based approaches to visualize

and analyze dissimilar types of biologically pertinent

interaction data has converted progressively more

prevalent in recent years [69] and permits us to un-

equivocally trail drug actions from molecule-level

interactions to organismal physiology [70].

Normally, the network-based approaches can be

divided into two expansive spaces: static network

and dynamic network.

Static network
In general, static network is superlative conceptua-

lized, as the computerized reconstruction of molecu-

lar anatomy tells us the mutual effect of molecules,

which gravitates toward wider and coarser in lati-

tude. With regard to this network, bulky interaction

data sets with thousands of nodes and edges can be

visualized interactively rather than statically. Several

methodologies are possible to assess the topograph-

ical properties based on key concepts variants of cen-

trality and eigenvector centrality to describe and

quantify the complex static network.

Variants of centrality in a network include degree,

closeness and betweenness. Each has made a vital

contribution in its own way: degree conveys us

how much access a particular node has to the other

nodes; closeness could appraisal the time required for

information to propagate to a given node in a net-

work by calculating the length of the path between

them [71]; betweenness corresponds to the total

number of nonredundant shortest paths going

through a certain node or edge [72] and, therefore,

indicates the reliance of a network on a specific node

for sustaining connectedness. However, these topo-

logical features of the centrality variants do not take

the importance of other nodes or the significance of

all paths resemble eigenvector centrality into ac-

count, which integrates not only the number of a

node’s links and the strength of those ties but also the

centrality of other nodes [73].

It has been a long-standing goal in systems

pharmacology to find relations between the topo-

logical properties and functional features of herb-dis-

ease connections through static networks study [11,

73]. Although being not entirely comprehended, the

proposed action mechanisms are suited for elucidat-

ing the disease therapies and guiding drug usage

including especially the curative effects of a combin-

ation therapy.

Dynamic network
Dynamic network is a renovation of molecular

physiology, a description of how the state of a

system progresses as time goes on with emphasis on

the particulars of a single subsystem [74, 75].

Compared with static network, which is less challen-

ging from an experimental perspective, dynamic

network obliges temporally, sometimes spatially

resolved data or even more data. The description

for dynamic network habitually entails of equation

that labels the time dependence of every last of the
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state variables of the system. Ordinary differential

equation [76], partial differential equation [77] and

stochastic simulation [78] are generally applied in

dynamic network modeling and analysis. To date, a

great deal of leverage can be gained in helping

understanding the interlocking network behaviors,

including sensitivity analysis, an established practice

lying in evaluating a subset of parameters to simplify

and better the redundancy parameters [79]; control

analysis, a mechanism that systematically controls the

state of the molecules (drugs, proteins, etc.) in a net-

work [75]; bifurcation analysis, a process to trace

time-varying change (s) for the state of a system in

a multidimensional space where each dimension sig-

nifies a particular concentration of the biochemical

factors involved [80].

Exploiting dynamic network to integrate diverse

data sets has been deemed as a feasible track toward

illuminating the origins of specific systemic diseases

[81] like stroke and total cardiovascular disease [82].

Uncovering the origins of diseases not only can help

us understand the diseases in genetic, pathway, pro-

tein and organ levels but also may provide better

therapy of them. In parallel, past records have

demonstrated that herbal medicines are ideal alterna-

tive medicines to western drugs for the cure of sys-

temic diseases including in especial the chronic

diseases [83]. Therefore, bridging network pharma-

cology and herbal medicines will faultlessly clarify

the therapeutic mechanisms for herbal medicines,

which, in turn, could aid in drug discovery. In the

‘Case study’ section, we will dissect the role that the

networks techniques play across the traditional herbal

medicines discipline, as exemplified by the anti-de-

pression herbal medicines.

SYSTEMS PHARMACOLOGY
PLATFORM FORHERBAL
MEDICINES
Based on the previous series of research, we propose

a novel integrated Herbal medicine systems pharma-

cology (HmSP) platform for the purpose of investi-

gating how herbs interact with the human body

from a molecular level (gen, protein) to the organism

level (Figure 2). The detailed process is as following:

(i) performing a large-scale data mining and statistical

analysis for effective herbs relevant to the disease of

interest; (ii) chemical database building for the herbs;

(iii) in silico ADME predicting to obtain

potential active compounds; (iv) target fishing by a

combinatorial approach integrating text mining, che-

mometric and chemogenomic methods; (v) gener-

ation of drug-target, drug-pathway and drug-disease

networks; (vi) data processing, visualizing and asso-

ciation study of herbs–diseases–organisms. The key

techniques in the HmSP platform have been success-

fully applied in our previous work to explore the

mechanisms of action of herbal medicines in the

treatment of cardiovascular diseases and virus diseases

[46, 48, 62]. A complete application of this platform

is provided in the following section, exemplified by

the depression disease and its treatment by herbs.

CASE STUDY
Depression is a kind of bad mood that belongs to

obsessive neurosis and is usually caused by many fac-

tors including the genetic, physical/chemical and

psychological ones. This disease has become a great

concern during more recent years, as 15% of the

people in developed countries suffer from severe de-

pression [84], of which �15% of may even commit

suicide [85]. Recently, depression is commonly trea-

ted with selective serotonin reuptake inhibitors

(SSRIs), such as fluoxetine, Citalopram and so

forth. However, single-agent applications could not

surmount the inherent characteristics of the disease

systems, such as redundancy and multi-functionality,

bringing about the trend of system-level intervention

like using drug combinations [86]. Actually,

depression has been clinically treated with specific

herbs or herbal combinations for many years. In

the following sections, we fully illustrate why and

how the proposed HmSP helps us to dissect the

mechanisms of those anti-depression herbal

medicines.

Anti-depression herbs determining and
compound database building
To obtain anti-depression herbs, PubMed and the

clinical trial database (www.Clinicaltrials.gov) were

investigated by a large-scale text mining with the

keywords ‘herbal medicine’ and ‘depression’. As a

result, 105 reported anti-depressive herbs were col-

lected. To lessen possible bias and further evaluate

the relationships between the herbs and depression, a

parameter, i.e. the ratio of the number of anti-de-

pressive-herb-related articles/the number of herb-

related articles is calculated. The hypergeometric

distribution was applied to obtain the chance
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improbable of co-occurrences of each herb and de-

pression to a certain level in at least k articles:

p ¼ 1�
Xk�1

i¼1

f ðiÞ ¼1�
Xk�1

i¼0

ð
K
i Þð

N�K
n�i Þ

ð
N
n Þ

ð1Þ

where N is the total number of articles in PubMed

(22 188 039 articles, as given by GoPubMed, access

time: October 9, 2012), K is the amount of litera-

tures associated with depression (285 790 articles, as

given by GoPubMed), n is the quantity about one

single herb, k is the number of papers about the ef-

fects of corresponding herbs on depression.

GoPubMed was used to get the value of N, K, n
and k. P-value indicates the consequence of rele-

vance between each herb and depression (significant

when P< 0.01) [87].

The results show that 16 herbs were significantly

correlated with the depression disease, among which

Cannabis sativa and Ginkgo biloba are found to be the

top well studied herbs ones (Table 1). Hypericum per-
foratum obtains the highest ratio (32.13%; P� 0.01),

supporting the fact that H. perforatum is the sole

herbal alternative to classic synthetic antidepressants

in the treatment of mild to moderate depression [88].

And following are Semen nelumbinis, Acorus tatarinowii,
Albizia julibrissin, Radix Bupleuri, Passiflora perpera,
Rhodiola rosea,C. sativa, Piper methysticum,Valeriana offici-
nalis, Magnolia Officinalis and so forth (Table 1).

Further, 1815 chemical components of these herbs

were extracted from our database TcmSPTM. As a

chemically oriented herbal encyclopedia, TcmSPTM

is a unique systems pharmacology platform of

Chinese herbal medicines that includes >500 medi-

cinal herbs and >30 000 chemical components and

their potential targets.

ADME screening
Four most ADME-relevant parameters, i.e. the

human oral bioavailability (OB), ‘drug-likeness’

(DL), the BBB and Caco2 permeability were ob-

tained for each compound of these herbs based on

our previous work [10, 89–91], respectively. In our

previous studies, the optimal OB predicting model

was supported by a data set of 805 structurally diverse

Figure 2: Workflow for systems pharmacology-based herbal pharmacology study. In the active compounds recur-
sively screening process, chemicals for herbs relevant to certain diseases obtained by a large-scale data mining and
statistical analysis were evaluated by in silico ADME screening to obtain potential active compounds. In the network
analysis process, three levels network drug^target, drug^pathway and pathway^ disease are generally generated
to realize data processing and visualizing and announce associations of herbs^ diseases^ organisms.The biochemical
pathway map is taken from http://www.genome.jp/kegg.
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drug (western drugs) with determination coefficient

(R2) of 0.80 and standard error of estimate (SEE) of

0.31 for test sets; the optimized BBB model is a

qualitative model containing 190 related but

chemically diverse compounds, which are either

penetrating or non-penetrating cross the BBB; the

Caco2 permeability model was construed by 100

drug molecules, which showed satisfactory statistical

results (R2 > 0.8). To achieve more promising drugs,

the filtering criteria were defined as follows:

DL� 0.18; BBB� 0; OB� 30% or Caco2��0.4

(with all corresponding data having been uploaded

to TcmSPTM).

As shown in Figure 3, �50% molecules

(907/1815) are orally bioavailable, whereas just

25% (454/1815) provide drug-like characters.

What’s stirring is that larger than 80% compounds

(1452/1815) can easily overcome the BBB and be

readily absorbed by Caco2 cell monolayers. Here,

among the 273 compounds after ADME screening,

47 representative compounds including ADME

favorable/literature-reported active agents were

singled out and displayed in Table 2 with their struc-

tures and ADME parameters listed. As an illustration,

three representative herbs were specified in detail to

interpret this screening principle.

Hypericum perforatum
The predicted active ingredients in H. perforatum,

which have favorable ADME features are hyperforin,

kaempferol and rutin. Surprisingly, compounds

hyperforin and kaempferol have been experimentally

demonstrated to have noteworthy antidepressant

activity [10, 92–94]. Besides, despite of showing

substandard OB and DL properties, hypericin has

also desirable neuro-activation property [95].

Analogously, rutin and amentoflavone are also not

highly orally bioavailable but showing therapeutic

effects [88, 96, 97] owing to the synergistic anti-

depressant effects [98].

Semen nelumbinis
As shown in Table 2, the leading ADME-favorable

compounds in S. nelumbinis are prevailingly grouped

Figure 3: ADME screening. The meanings of the 16 colors are shown in the right of the figure. Characters in the
abscissa are as follows: OB- oral bioavailability value (�30%); DL- Drug-likeness (�0.18); BBB- the BBB (�0); Caco2
(��0.4); All- the number of compositions of the 16 herbs. Ordinate reveals the percentage of compounds satisfy
the qualifications above separately.

Table 1: Correlations between herbs with anti-
depression

Herb name Volume of articles

Total Relevant to
depression disease
(Rate; p-value)

Hypericum perforatum (H. perforatum) 1718 552 (32.13%; p� 0.01)
Semen nelumbinis (S. nelumbinis) 23 5 (21.74%; p� 0.01)
Acorus tatarinowii (A. tatarinowii) 33 5 (15.155%; p� 0.01)
Radix bupleuri (R. bupleuri) 154 21 (13.64%; p� 0.01)
Albizia julibrissin (A. julibrissin) 43 5 (11.63%; p� 0.01)
Passiflora perpera (P. perpera) 109 12 (11.01%; p� 0.01)
Rhodiola rosea (R. rosea) 399 26 (6.52%; p� 0.01)
Cannabis sativa (C. sativa) 11506 740 (6.43%; p� 0.01)
Piper methysticum (P. methysticum) 662 42 (6.34%; p� 0.01)
Valeriana officinalis (V. officinalis) 733 39 (5.32%; p� 0.01)
Magnolia officinalis (M. officinalis) 267 12 (4.49%; p� 0.01)
Perilla frutescens (P. frutescens) 207 10 (4.49%; p� 0.01)
Paeonia lactiflora (P. lactiflora) 310 12 (3.87%; p� 0.01)
Lavandula pedunculata (L. pedunculata) 1315 42 (3.19%; p� 0.01)
Crocus sativus (C. sativus) 658 21 (3.19%; p� 0.01)
Ginkgo biloba (G. biloba) 3034 95 (3.13%; p� 0.01)
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Table 2: Representative active compounds BBB score �0 or Caco2 score ��0.4 represent that molecules can
cross the BBB and be absorbed by Caco2 cell line

Number Compounds Structure OB DL BBB Caco2 Herb

M019 Saikosaponin c 54.22 0.63 0.01 0.29 R. bupleuri

M020 Saikosaponin a 25.06 0.63 0.01 0.04 R. bupleuri

M021 Saikosaponin d 16.78 0.63 0.01 0.17 R. bupleuri

M025 Cannabichromene 52.07 0.24 0.06 1.15 C. sativa

M027 Cannabidiol 3.97 0.21 0.06 1.38 C. sativa

M029 Tetrahydrocannabinol 13.39 0.32 0.05 1.45 C. sativa

M037 Hyperforin 44.03 0.60 0.03 0.77 H. perforatum

M038 Isoquercitrin 35.78 0.77 0.0 1 �1.47 H. perforatum

M039 Hypericin 14.52 0.08 0.00 0.28 H. perforatum

M042 Cinnamyl alcohol 44.42 0.02 0.12 �1.65 R. rosea

M046 Rosavin 48.85 0.58 0.12 0.86 R. rosea

M047 Rosin 48.85 0.58 0.12 0.86 R. rosea

M048 Rosarin 51.95 0.57 0.12 1.12 R. rosea

(continued)
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Table 2: Continued

Number Compounds Structure OB DL BBB Caco2 Herb

M049 Salidroside 26.83 0.20 0.05 0.66 R. rosea

M055 Honokiol 37.34 0.15 0.08 1.45 M. officinalis

M056 Magnolol 44.72 0.15 0.08 1.37 M. officinalis

M059 Dihydromethysticin 65.23 0.20 0.02 0.03 P. methysticum

M074 (þ)-kawain 18.39 0.10 0.01 �0.49 P. methysticum

M075 Dihydrokavain 69.61 0.10 0.04 �1.71 P. methysticum

M078 Methysticin 10.51 0.21 0.06 0.81 P. methysticum

M080 Lirinidine 19.80 0.36 0.11 0.40 S. nelumbinis

M081 Asimilobine 11.41 0.33 0.05 �0.96 S. nelumbinis

M082 Nornuciferine 46.72 0.36 0.09 1.23 S. nelumbinis

M083 Anonaine 24.50 0.47 0.11 1.04 S. nelumbinis

(continued)
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Table 2: Continued

Number Compounds Structure OB DL BBB Caco2 Herb

M104 Betaasarone 16.79 0.06 0.06 1.45 A. tatarinowii

M107 Paeoniflorin 10.99 0.79 �0.12 �1.74 P. lactiflora

M108 Isovaleric acid 36.76 0.01 0.07 0.98 V. officinalis

M109 Valerenic acid 43.64 0.10 0.10 1.51 V. officinalis

M110 Didrovaltrate 100.00 0.50 0.04 1.12 V. officinalis

M122 Isoeugenyl-isovalerate 54.00 0.09 0.05 1.17 V. officinalis

M128 Benzoflavone 60.31 0.32 0.09 0.64 P. perpera

M129 Gaba 91.95 0.01 0.04 �0.24 P. perpera

M137 Harmane 38.58 0.10 0.11 1.52 P. perpera

M142 Lavandulol 50.40 0.02 0.07 1.24 L. pedunculata

M143 Linalool 43.59 0.02 0.06 1.29 L. pedunculata

M144 Linalyl acetate 24.42 0.04 0.07 1.43 L. pedunculata

(continued)
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Table 2: Continued

Number Compounds Structure OB DL BBB Caco2 Herb

M167 Isorhamnetin 11.62 0.31 �0.03 0.28 G. biloba

M174 Crocetin 36.95 0.26 0.00 0.50 C. sativus

M177 Crocin 33.44 0.26 0.00 0.59 C. sativus

M178 Rosmarinic acid 48.60 0.46 �0.12 0.82 P. frutescens

M179 2,4,5-trimethoxycinnamic
acid

15.17 0.09 0.01 0.82 P. frutescens

M201 Amentoflavone 2.79 0.65 0.01 �0.25 H. perforatum; G. biloba

M204 Hyperoside 35.50 0.28 0.00 0.028 R. bupleuri, H. perforatum,
S. nelumbinis

M206 Quercitrin 46.90 0.74 0.00 0.04 H. perforatum, A.
julibrissin,G. biloba

M212 Apigenin 45.09 0.21 0.02 0.41 P. frutescens, P. perpera,
G. biloba,V. officinalis

M216 Rutin 47.46 0.28 0.00 0.05 R. bupleuri, H. perforatum,
R. rosea, S. nelumbinis,
G. biloba

M217 Kaempferol 67.43 0.24 0.02 0.15 R. bupleuri, H. perforatum,
A. julibrissin, R. rosea,
V. officinalis, P. perpera,
G. biloba
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into flavonol glycosides and various alkaloids. The

former consists of isoquercitrin and hyperoside,

whereas anonaine, asimilobine, lirinidine and nornu-

ciferine belong to alkaloids. Of these components,

conformably to animal models of depression-like

symptom [99], the flavonol glycosides display

powerful antidepressant effect. Analogously, al-

though with relatively low OB values, these alkaloids

also possess antidepressant activity appraised by

neurotransmitter reuptake inhibition bioassay [100,

101]. In addition, the component comparison

shows that isoquercitrin and hyperoside are the

same active ingredients of H. perforatum and S. nelum-
binis, explaining why the two herbs share similar

pharmacological activities.

Rhodiola rosea
Based on ADME analysis, the potential active sub-

stances of R. rosea are phenylethanol derivatives (rho-

dioloside b and rhodioloside c) and phenylpropanoid

glycosides such as rosin, rosavin and rosarin, which is

consistent with the previous findings from the re-

search on component analysis [102]. Chemicals rho-

dioloside b and rhodioloside c are active principals,

whereas the rosavins (rosin, rosavin and rosarin) are

low in activity, but the drug efficiency can be

increased by applying individual components to-

gether [103]. These compounds have been applied

in the pharmacological treatment of depression [104]

through inhibiting monoamine oxidases A to regu-

late the degradation of biogenic amines [105].

The hit rate of ADME screening to obtain under-

lying active compounds still remains an ongoing

focus in drug discovery efforts. However, the present

work indicates that the integration of various requis-

ite ADME screening tools in a single operating is

effective to find the compounds with potential

pharmacological activities. In the following part,

we will minutely interpret the functions of these

potential active ingredients in the context of net-

works by the pivot-target that bridging them.

Target fishing
The target fishing was then performed using a com-

binatorial approach integrating text mining, chemo-

metric and chemogenomic methods. First, a text

mining for all target proteins was carried out in

herbal ingredient targets database (http://lifecenter.

sgst.cn/hit/). Second, the virtual chemical

Engerprint Similarity Ensemble Approach method

was applied for target prediction (http://sea.bkslab.

org/); third, the omics-based ligand-target chemoge-

nomic model (LTC) developed by Yu et al. with a

concordance of 82.83%, a sensitivity of 81.33% and a

specificity of 93.62% was further introduced for val-

idation with the results obtained earlier in the text

[56]; fourth, mapping all the obtained targets to

database UniProt (http://www.uniprot.org/) for

normalization [106]; finally, the systematically eval-

uated target proteins were further subjected to

PharmGkb [107], TTD and the Comparative

Toxicogenomics Database [108] databases to delete

noise and errors and to allow a more complete and

greater accuracy view on the drug-target associations.

As summarized in Table 3, 67 targets that relate to

depression disease were finally obtained.

To unfold the relationships between these herbal

targets and the depression or other diseases or known

antidepressant targets, the radar chart analysis was

performed as follows: First, the 36 known anti-

depressant targets was collected from database

TTD; then, mapping herb and all known targets to

databases PharmGKB, TTD and Comparative

Toxicogenomics Database to build the connections

with diseases. Finally, all the information was sent to

Medical Subject Headings (http://www.nlm.nih.

gov) for further identification of disease categories.

As shown in Figure 4, the western drugs share 15

common targets (marked in bold in Table 3) with

the herbs, indicating the multi-target feature of

herbal medicines. And the tendency of herbal

target-disease relationship is strongly in line with

those known antidepressant targets, which demon-

strates that herbal medicine has similar therapeutic

effects as compared with the western drugs.

However, these depression-related targets are not

only related to C10 (Nervous System Diseases) but

also connected with other diseases such as C06, C08

and so forth. Therefore, it is suggested that in treat-

ment of depression disease, attention should be paid

to possible side effects caused by the herbs interacting

with the overlapping targets of depression and other

diseases [109–112].

Network construction and analysis
To decipher the action mechanism of herbal medi-

cines and discover the most potential ‘follow-on’

drugs, with the bridge connection of targets, we gen-

erate two levels of networks: Compound-Target

network (C-T network) and Target-Pathway net-

work (T-P network).

Systems pharmacology page 13 of 24
 at U

niversidade Federal do R
io G

rande do N
orte on N

ovem
ber 12, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://lifecenter.sgst.cn/hit/
http://lifecenter.sgst.cn/hit/
http://sea.bkslab.org/
http://sea.bkslab.org/
http://www.uniprot.org/
http://www.nlm.nih.gov
http://www.nlm.nih.gov
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Table 3: The information of depression-related targets of herbs

Number UniProt Protein name (gene names) Organisms

P01 O75469 Nuclear receptor subfamily 1 group I member 2 (NR1I2) Homo sapiens
P02 P00441 Superoxide dismutase [Cu-Zn] (SOD1) Homo sapiens
P03 P01189 Pro-opiomelanocortin (POMC) Homo sapiens
P04 P02768 Serum albumin (ALB) Homo sapiens
P05 P04150 Glucocorticoid receptor (NR3C1) Homo sapiens
P06 P05121 Plasminogen activator inhibitor 1 (SERPINE1) Homo sapiens
P07 P05177 Cytochrome P450 1A2 (CYP1A2) Homo sapiens
P08 P05231 Interleukin-6 (IL6) Homo sapiens
P09 P06850 Corticoliberin (CRH) Homo sapiens
P10 P07550 Beta-2 adrenergic receptor (ADRB2) Homo sapiens
P11 P08183 Multidrug resistance protein 1 (ABCB1) Homo sapiens
P12 P08219 Gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1) Bos taurus
P13 P08588 Beta-1 adrenergic receptor (ADRB1) Homo sapiens
P14 P08908 5-hydroxytryptamine receptor 1A (HTR1A) Homo sapiens
P15 P09038 Fibroblast growth factor 2 (FGF2) Homo sapiens
P16 P14174 Macrophage migration inhibitory factor (MIF) Homo sapiens
P17 P14416 D(2) dopamine receptor (DRD2) Homo sapiens
P18 P14600 Substance-P receptor (Tacr1) Rattus norvegicus
P19 P14842 5-hydroxytryptamine receptor 2A (Htr2a) Rattus norvegicus
P20 P14867 Gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1) Homo sapiens
P21 P14902 Indoleamine 2,3-dioxygenase 1 (IDO1) Homo sapiens
P22 P16220 Cyclic AMP-responsive element-binding protein 1 (CREB1) Homo sapiens
P23 P18090 Beta-1 adrenergic receptor (Adrb1) Rattus norvegicus
P24 P19327 5-hydroxytryptamine receptor 1A (Htr1a) Rattus norvegicus
P25 P19643 Amine oxidase [flavin-containing] B (Maob) Rattus norvegicus
P26 P20288 D(2) dopamine receptor (DRD2) Bos taurus
P27 P20366 Protachykinin-1 (TAC1) Homo sapiens
P28 P21396 Amine oxidase [flavin-containing] A (Maoa) Rattus norvegicus
P29 P21397 Amine oxidase [flavin-containing] A (MAOA) Homo sapiens
P30 P21398 Amine oxidase [flavin-containing] A (MAOA) Bos taurus
P31 P21918 D(1B) dopamine receptor (DRD5) Homo sapiens
P32 P21964 Catechol O-methyltransferase (COMT) Homo sapiens
P33 P23415 Glycine receptor subunit alpha-1 (GLRA1) Homo sapiens
P34 P23560 Brain-derived neurotrophic factor (BDNF) Homo sapiens
P35 P23975 Sodium-dependent noradrenaline transporter (SLC6A2) Homo sapiens
P36 P25103 Substance-P receptor (TACR1) Homo sapiens
P37 P27169 Serum paraoxonase/arylesterase 1 (PON1) Homo sapiens
P38 P27338 Amine oxidase [flavin-containing] B (MAOB) Homo sapiens
P39 P28222 5-hydroxytryptamine receptor 1B (HTR1B) Homo sapiens
P40 P28223 5-hydroxytryptamine receptor 2A (HTR2A) Homo sapiens
P41 P28335 5-hydroxytryptamine receptor 2C (HTR2C) Homo sapiens
P42 P28564 5-hydroxytryptamine receptor 1B (Htr1b) Rattus norvegicus
P43 P28647 Adenosine receptor A3 (Adora3) Rattus norvegicus
P44 P29274 Adenosine receptor A2a (ADORA2A) Homo sapiens
P45 P29475 Nitric oxide synthase, brain (NOS1) Homo sapiens
P46 P30543 Adenosine receptor A2a (Adora2a) Rattus norvegicus
P47 P31645 Sodium-dependent serotonin transporter (SLC6A4) Homo sapiens
P48 P31652 Sodium-dependent serotonin transporter (Slc6a4) Rattus norvegicus
P49 P33765 Adenosine receptor A3 (ADORA3) Homo sapiens
P50 P34972 Cannabinoid receptor 2 (CNR2) Homo sapiens
P51 P34998 Corticotropin-releasing factor receptor 1 (CRHR1) Homo sapiens
P52 P35354 Prostaglandin G/H synthase 2 (PTGS2) Homo sapiens
P53 P35363 5-hydroxytryptamine receptor 2A (Htr2a) Mus musculus
P54 P41595 5-hydroxytryptamine receptor 2B (HTR2B) Homo sapiens
P55 P42261 Glutamate receptor 1 (GRIA1) Homo sapiens
P56 P48039 Melatonin receptor type 1A (MTNR1A) Homo sapiens
P57 P48974 VasopressinV1b receptor (Avpr1b) Rattus norvegicus
P58 P49840 Glycogen synthase kinase-3 alpha (GSK3A) Homo sapiens
P59 P49841 Glycogen synthase kinase-3 beta (GSK3B) Homo sapiens
P60 P54833 Beta-2 adrenergic receptor (ADRB2) Canis familiaris
P61 P61169 D(2) dopamine receptor (Drd2) Rattus norvegicus
P62 P62812 Gamma-aminobutyric acid receptor subunit alpha-1 (Gabra1) Mus musculus
P63 P62813 Gamma-aminobutyric acid receptor subunit alpha-1 (Gabra1) Rattus norvegicus
P64 P79208 Prostaglandin G/H synthase 2 (PTGS2) Ovis aries
P65 Q01727 Melanocyte-stimulating hormone receptor (Mc1r) Mus musculus
P66 Q01812 Glutamate receptor, ionotropic kainate 4 (Grik4) Rattus norvegicus
P67 Q04760 Lactoylglutathione lyase (GLO1) Homo sapiens

Note:The targetsmarked in bold are shared by herbs andwestern drugs
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C-T network
The bipartite C-T network graph (Figure 5) was con-

structed for the 218 (Supplementary Table S1) of 273

compounds after ADME screening by connecting to

the 67 potential targets through 1007 interactions. To

visualize it, network analysis was used by evaluating

the degree and betweenness of the nodes, resulting in

an average degree per compound of 4.62 and 15.03

per target, respectively. Fascinatingly, a large number,

�79%, of represent active compounds are of higher

(larger) than the average degrees (betweenness),

which are considered to be clinically valid and labeled

as ‘follow-on’ drugs [113].

Among the ‘follow-on’ drugs, M094 (4’-methyl-

N-methylcoclaurine) in S.nelumbinis exhibits the lar-

gest number of interactions with various targets.

Some compounds that are not intensively connected

still have significant pharmacological activities. For

example, compound M039 (betweenness¼ 0; de-

gree¼ 1) is found to bind to protein P51

(betweenness¼ 0; degree¼ 1), a typical target for

the treatment of depression. This compound is iden-

tified as remarkable antidepressant molecule in herb

H. perforatum, which has attracted an upward devo-

tion of pharmaceutical industry [114]. More interest-

ingly, although the topology property of the net

does not bias toward the rosavins (name: rosin,

rosavin and rosarin), these rosavins all found to

bind to the same Food and Drug Administration

(FDA)-approved antidepressant target P54

(betweenness¼ 0.22; degree¼ 7), indicating poten-

tial synergistic mechanism in this herbal mixture for

treating the disease. Finally, 34 targets from the C-T

network were further demonstrated closely related to

depression in the T-P network, which also contains

the controversial target P52 (betweenness¼ 0.09;

degree¼ 132) and so forth [115–118].

T-P network
To reflect a global view of the interactions between

targets and depression therapy-associated pathways

(Figure 6), the obtained 34 targets were further

mapped onto 104 pathways, which show an average

degree of 6.4 per target and 2.1 per pathway, re-

spectively. The results show that most pathways are

involved in a small number of targets, whereas about

one-fourth of the targets locate in multiple pathways

(�8), which could be the key targets for depression

treatment. To further mirror the target-pathway

interactions, we applied a target-based approach to

probe the pathways possibly involved in the thera-

peutic actions.

Figure 4: The equi-angular spokes radar chart. Each spoke characterize one of the diseases.The length of a spoke
is distributed pro data, which is proportional to the quantity of target proteins relative to the homologous disease.
A green streak for herbal medicine antidepressant targets, whereas a blue brim for western drug antidepressant
targets are plotted to connect the data values for each spoke, which stretch the chart radar-like facades.

Systems pharmacology page 15 of 24
 at U

niversidade Federal do R
io G

rande do N
orte on N

ovem
ber 12, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbt035/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Those pathways intensively connected to tar-

gets, such as neuroactive ligand-receptor inter-

action (degree¼ 15), calcium signaling pathway

(degree¼ 9) and dopaminergic synapse (de-

gree¼ 9), could be the key pathways that drugs

engender their antidepressant effects. Actually,

these pathways have already been testified and

widely used for the depression therapies [119–

121]. For instance, the pathway neuroactive

ligand-receptor interaction with highest degrees

could exploit the neurotransmitters glutamate,

dopamine, serotonin, noradrenaline as its appetizers

to adjust certain crucial pathways including of

Long-term potentiation, Long-term depression

and synthesis of Gap junction to cope with emo-

tions and solace stress.

Figure 5: The C-T network. A compound node and a target protein node are linked if the protein is targeted by
the corresponding compound. Node size is proportional to its degree.

page 16 of 24 Huang et al.
 at U

niversidade Federal do R
io G

rande do N
orte on N

ovem
ber 12, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Figure 6: TheT-P network. A link is placed between a target and a pathway if the pathway is lighted at the target.
The area of the protein (pathway) node is proportional to the number of pathways that the target involves (the
number of targets that the pathway has). The information of pathways is obtained by mapping the target proteins
to the KEGG pathway database.

Systems pharmacology page 17 of 24
 at U

niversidade Federal do R
io G

rande do N
orte on N

ovem
ber 12, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


In addition to the highly connected pathways,

some poorly onnected examples also show ideal

pharmacological functions. For example, the synaptic

plasticity impairment of pathway glutamatergic syn-

apse is also therapeutically relevant to the depression

[122]. This pathway is only intervened by target P55

(Glutamate receptor ionotropic, AMPA 1), existing

in the neuronal membrane even before the synapto-

genesis [123]. Protein P55 could be blocked by the

endogenous intracellular polyamines [124], indicat-

ing that calcium-permeable receptor channels the

glutamatergic synapse activity.

Depression pathway
To better recognize the integral adjustment of the

antidepressant herbal medicines, an incorporated

‘Depression Pathway’ (Figure 7) was assembled

based on the ‘Basic Depression Pathway’ from cur-

rent knowledge of depression pathology, including

pathway SSRI, selective norepinephrine (NE) reup-

take inhibitor pathway, wingless-type MMTV inte-

gration site family (Wnt) signaling pathway,

brain-derived neurotrophic factor (BDNF)/TrkB

signaling pathway and Ca2þ signaling pathway

[125–129]. First, the human protein–protein inter-

action (PPI) data from Biomolecular Interaction

Network Database (BIND), Biological General

Repository for Interaction Datasets (BioGRID),

Database of Interacting Proteins (DIP), Human Pro-

tein Reference Database (HPRD), IntAct, Molecular

INTeraction database (MINT), Mammalian Protein-

Protein Interaction Database, Protein–Protein Inter-

action Database for PDZ-domains (PDZBase) and

Reactome databases [130–138] were collected to

build a comprehensive background network; then,

proteins in the ‘Basic Depression Pathway’ were

mapped to the PPIs as baits to tempt their direct

partners to the extent that more herbal targets are

involved in; finally, intimate proteins were gathered

together on the basis of contemporary knowledge of

depression pathology to clearly show the mode of

action that pictures the pathway [139].

To search the relativity of the herbal targets for the

‘Depression Pathway’ at a higher level of organiza-

tion, we delimit the nearness between herbal medi-

cine targets p and ‘Basic Depression Pathway’ related

proteins p’ based on the PPI network by the

expression:

’pp0 ¼
1

nm

Xn

i¼1

Xm

j¼1

e
�D2

pi p
0
j ð2Þ

where pi represents the herbal medicine target, pj’ is

the ‘Basic Depression Pathway’ related protein,

whereas Dpipj’ is the shortest distance between pi
and pj’ on the PPI network. n and m, respectively,

represents the number of herbal medicine target

p and depression pathway related protein p’, which

can be mapped on the PPI network (n: 44, m: 85). If

two proteins are unconnected on the PPI network,

the Dpipj’ is defined as1.

Based on the formula, the ultimate nearness be-

tween the two categories proteins is 0.0117.

Statistical significance test comes before further con-

sideration of the results with 44 randomly proteins

chosen from the PPI network as a rigorous control

rather than the 44 herbal targets and 85

‘Depression-related proteins’ fixed on the back-

ground network. The obtained nearness of each

time is generally similar of the 10 000 times of ran-

domization. For the purpose of statistical evaluation

between the actual distance and those of random

counterpart, the commonly used Z test is applied,

and the significance is defined as the P< 0.01.

Matching with the randomly selected 44 proteins

(nearness¼ 0.0022), the 44 herbal targets display

extremely significantly (P� 0.01) close functional

linkage correlation (ultimate nearness¼ 0.0117) to

the 85 depression pathway related proteins. Of

the 67 target proteins, 43 can be plotted on the

pathways, and the intracellular signaling cascades

that underlie the depression and treatment response

can be organized as explained in the following

sections.

Direct interaction
As shown in Figure 7, 13 proteins (pink rectangles)

located form upstream to downstream in sequence

on the depression pathway can be targeted directly

by herbal ingredients. This result potentially states

that the herbs cure the depression disease through

direct regulation of a set of target proteins on the

pathway.

Two NE receptor proteins P13, P10 and the NE

reuptake protein P35 are all located at the upstream

of selective NE reuptake inhibitor pathway. The NE

signaling through G-protein receptors results in the

activation of Akt by disruption of PP2A.

Phosphorylated Akt can phosphorylate the N-ter-

minal serine of GSK3B, leading to the inhibition

of GSK3B activity. GSK3B is a major downstream

target for psychiatric illness, suggesting that the bin-

ders, such as M183 in Perilla frutescens bound to P32
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and M030 in C. sativa to P35, might facilitate the

binding of NE, thus exhibiting expected antidepres-

sant effects.

Also, the disturbance of SSRI pathway is a ser-

viceable treatment option for patients with depres-

sion. M002 in R. Bupleuri may inhibit presynaptic

receptor P47, resulting in an increasing of the 5-

HT concentration in the synaptic cleft, thus nega-

tively regulating the desensitization of postsynaptic

receptors P40, P41, P14 and P39 in the pathway.

After the interaction with 5-HT, the main signal-

ing linkage for the P40 and P41 receptors will

activate phospholipase C, beta (PLCB) through

coupling with guanine nucleotide binding protein,

q polypeptide (GNAQ). The main signaling path-

way for P14 and P39 receptors is via a coupling of

guanine nucleotide binding protein, alpha inhibit-

ing activity polypeptide (GNAI), leading to the

decrease of cAMP formation by inhibiting the ade-

nylate cyclase (ADCY). It, in this way, eventually

actives the P22, a target of antidepressants that

relates to mood stabilization located at the down-

stream of the pathway.

Indirect interaction
As shown in Figure 7, the major herb targets are cell

membrane proteins, consist with the fact that mem-

brane proteins account for �70% of totally recog-

nized drug targets [140]. It is also found that the

herb targets (indicated by green rectangles), such as

P45 and P51, can connect indirectly with the depres-

sion-related pathway by a bridge protein like ADRA1

or GNAI. An elegant example is the protein P45,

which can be upregulated by protein kinase A

(PKA) [141]. P45 exerts a negative regulation of dis-

eases of anxiety and depression [142], inferring that its

inhibition by M108 (V. officinalis) might promote the

uptake of NE and lead an effective treatment of the

diseases. In addition, the CRH signaling through P51

is also an important factor for major depression and

anxiety disorders [143]. The antidepressant M039 (H.
perforatum) may block this pathway and further disturb

the GNAQ, GNAI and GNAS in the SSRI pathway

to activate cAMP responsive element binding protein

1 (CREB1). All this indicates that some herbs might

be potential therapeutic tools for dealing with depres-

sion through indirect actions on this pathway.

Figure 7: Distribution of target proteins of herbs on the compressed ‘depression pathway’. Six pathways (lightsky-
blue) form the compressed depression pathway. Pathways are marked in different colors. Arrows indicate activation,
T-arrows indicated inhibition and segments indicate actions that can either be activatory or inhibitory on the specific
targets. Generally, in the late phase of signaling, two waves of signaling are mediated by GSK3B and CREB1 and
lead to several molecular, cellular and behavioral deficits, as summarized in the boxes at the right.
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Cross-talk
The term biological cross-talk is described as one or

more components of one signal transduction path-

way affect(s) another. The most common form of

cross-talk can be achieved between proteins of sig-

naling cascades. A typical instance of cross-talk can

be observed between the BDNF/TrkB pathway

(purple) and Wnt pathway (cyan)/Ca2þ signaling

pathway (red) in the depression disease, as in which

mutual interaction are expected to occur between

them owing to the common components connect-

ing with either pathway.

For example, schematics of BDNF/TrkB pathway

and Wnt pathway are coupled together to activate

the intracellular signaling cascades, thus leading to

the regulation of GSK3B. Inhibition of GSK3B ac-

tivity may result in the stabilization of b-Cat and

subsequent translocation of b-Cat to the nucleus

and activation of the transcription of Wnt target

genes. Thus, compounds such as M038 in H. perfora-
tum exert their antidepressant effects by binding to

GSK3B and finally disrupt the cross-talk between the

pathways. It is also found that BDNF/TrkB pathway

is involved in the activation of intracellular signaling

cascades including the PI3K/Akt and MEK/ERK.

Regulation of CREB by ligands like M194 (P. frutes-
cens) may affect the cross-talk between the pathways,

regulating the expression of genes involved in the

cell proliferation, neurogenesis and mood stabiliza-

tion [128].

CONCLUSIONANDPERSPECTIVE
Systems pharmacology involves the application of

systems biology approaches, combined with the

pharmacokinetics and pharmacodynamics evalu-

ations, to the study of drugs and their targets and

effects [144–146]. Systems pharmacology analysis

generally counts on a large number of variables at a

genome level to construct networks for evaluating

the drug action and understanding the therapeutic

mechanisms. As a major tool, the network analysis

based on widely existed databases permits us to form

an initial understanding of the action mechanisms

within the context of systems-level interactions. By

linking with pathways and networks, systems

pharmacology is also expected to guarantee the ver-

acity of the predictive pharmacokinetic and pharma-

codynamics models of therapeutic efficacy.

In this work, we have highlighted the principles

and applications of a newly proposed HmSP in drug

discovery and understanding of the therapeutic mech-

anisms, which is specially designed for herbal medi-

cines. The workout offered in the case study proves

the power of this methodology to obtain the potential

drugs, latent targets, pathways and networks. The

main findings are as follows:

(1) The proposed text mining approach is reliable to

find effective herbs relevant to specific/certain

disease;

(2) The DL evaluation is indispensable to screen out

potential active herb ingredients with high qual-

ity and high efficiency;

(3) The strategy combining with pharmacology and

network analyses is devoted to helping identify

and interpret the multi-scale mechanisms of

drug action, disease association and even side

effects.

(4) The value of HmSP lies in its general applicabil-

ity to herbal medicines for various diseases.

When faced with the challenges to rapidly de-

velop new drugs, conventional methods usually

ends up with failed results, which partly attribute

to the lack of understanding of the multi-scale mech-

anisms that underlie the spread of effects from mo-

lecular-level interactions to organismal-level

phenotypes. Although still in its infant stage, systems

pharmacology has exhibited great capacity to influ-

ence the development and usage of drugs. With the

evolution of systems biology and medicine, the pace

of new therapeutic development will keep up with

the explosion in scientific knowledge, thus facilitat-

ing the development of novel drugs.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� As herbal medicines are featured as abundant bioactive ingredi-
ents and multiple targets, systems pharmacology provides the
tools to understand the therapeuticmechanisms of herbalmedi-
cines intervening complex chronic diseases such as depression.

� ADME strategies that are adopted tovisualize the active ingredi-
ents and explore the mechanisms of action of herbs advance
the process of drug discovery.

� The strategy combining with pharmacology and network ana-
lyses is devoted to helping identify and interpret the multi-scale
mechanisms of drug action, disease association and even side
effects.
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